10 Übungsaufgaben

Im Folgenden findet ihr verschiedene Übungsaufgaben, die ihr mit Hilfe des bisher gelernten Wissens, lösen könnt. Die Lösungen aller Aufgaben findet ihr in Kapitel 13.

10.1 Aufgabe 1

Die erste Aufgabe besteht darin, anhand eines vorgelegten Outputs herauszufinden, welches Modell auf die Daten angewandt wurde, zu begründen, woran ihr eure Lösung festmacht und ob das Modell auf die Daten passt, oder nicht. Dazu findet ihr im Folgenden fünf verschiedene Outputs.

10.1.1 Output 1

lavaan 0.6-3 ended normally after 23 iterations

  Optimization method                           NLMINB
  Number of free parameters                         10
  Number of equality constraints                     7

  Number of observations                           176

  Estimator                                         ML
  Model Fit Test Statistic                     941.414
  Degrees of freedom                                41
  P-value (Chi-square)                           0.000

Model test baseline model:

  Minimum Function Test Statistic              603.650
  Degrees of freedom                                28
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.000
  Tucker-Lewis Index (TLI)                      -0.068

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2167.253
  Loglikelihood unrestricted model (H1)      -1696.546

  Number of free parameters                          3
  Akaike (AIC)                                4340.506
  Bayesian (BIC)                              4350.017
  Sample-size adjusted Bayesian (BIC)         4340.517

Root Mean Square Error of Approximation:

  RMSEA                                          0.353
  90 Percent Confidence Interval          0.334  0.373
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.440

Parameter Estimates:

  Information                                 Expected
  Information saturated (h1) model          Structured
  Standard Errors                             Standard

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1                1.000                              
    y2                1.000                               
    y3                1.000                               
    y4                1.000                               
    y5                1.000                              
    y6                1.000                               
    y7                1.000                              
    y8                1.000                               0.536    0.454

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               3.712    0.049   75.516    0.000    
   .y1                0.000                               
   .y2                0.000                              
   .y3                0.000                              
   .y4                0.000                               
   .y5                0.000                             
   .y6                0.000                               
   .y7                0.000                              
   .y8                0.000                               

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    0.287    0.046    6.287    0.000    
   .y1      (veps)    1.105    0.045   24.819    0.000    
   .y2      (veps)    1.105    0.045   24.819    0.000  
   .y3      (veps)    1.105    0.045   24.819    0.000    
   .y4      (veps)    1.105    0.045   24.819    0.000   
   .y5      (veps)    1.105    0.045   24.819    0.000    
   .y6      (veps)    1.105    0.045   24.819    0.000   
   .y7      (veps)    1.105    0.045   24.819    0.000    
   .y8      (veps)    1.105    0.045   24.819    0.000    

10.1.2 Output 2

lavaan 0.6-3 ended normally after 14 iterations

  Optimization method                           NLMINB
  Number of free parameters                         13
  Number of equality constraints                     2

  Number of observations                           300

  Estimator                                         ML
  Model Fit Test Statistic                      58.147
  Degrees of freedom                                16
  P-value (Chi-square)                           0.000

Model test baseline model:

  Minimum Function Test Statistic              910.631
  Degrees of freedom                                15
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.953
  Tucker-Lewis Index (TLI)                       0.956

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2458.321
  Loglikelihood unrestricted model (H1)      -2429.247

  Number of free parameters                         11
  Akaike (AIC)                                4938.642
  Bayesian (BIC)                              4979.384
  Sample-size adjusted Bayesian (BIC)         4944.498

Root Mean Square Error of Approximation:

  RMSEA                                          0.094
  90 Percent Confidence Interval          0.069  0.120
  P-value RMSEA <= 0.05                          0.003

Standardized Root Mean Square Residual:

  SRMR                                           0.100

Parameter Estimates:

  Information                                 Expected
  Information saturated (h1) model          Structured
  Standard Errors                             Standard

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)  
  eta =~                                                                
    y1                1.000                               
    y2                1.000                               
    y3                1.000                               
    y4                1.000                               
    y5                1.000                               
    y6                1.000                              

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               0.000                               
   .y1               -0.003    0.069   -0.048    0.962   
   .y2                0.417    0.072    5.790    0.000    
   .y3                0.350    0.072    4.894    0.000    
   .y4                0.667    0.068    9.778    0.000   
   .y5               -0.057    0.068   -0.831    0.406   
   .y6                0.527    0.068    7.725    0.000    

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    0.826    0.076   10.871    0.000    
   .y1      (vps1)    0.619    0.059   10.405    0.000    
   .y2      (vps2)    0.728    0.068   10.685    0.000    
   .y3      (vps3)    0.709    0.067   10.642    0.000    
   .y4      (vps4)    0.569    0.031   18.355    0.000    
   .y5      (vps4)    0.569    0.031   18.355    0.000    
   .y6      (vps4)    0.569    0.031   18.355    0.000

10.1.3 Output 3

lavaan 0.6-3 ended normally after 15 iterations

  Optimization method                           NLMINB
  Number of free parameters                          7

  Number of observations                           200

  Estimator                                         ML
  Model Fit Test Statistic                       4.266
  Degrees of freedom                                 2
  P-value (Chi-square)                           0.119

Model test baseline model:

  Minimum Function Test Statistic              322.845
  Degrees of freedom                                 3
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.993
  Tucker-Lewis Index (TLI)                       0.989

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1161.377
  Loglikelihood unrestricted model (H1)      -1159.244

  Number of free parameters                          7
  Akaike (AIC)                                2336.754
  Bayesian (BIC)                              2359.842
  Sample-size adjusted Bayesian (BIC)         2337.665

Root Mean Square Error of Approximation:

  RMSEA                                          0.075
  90 Percent Confidence Interval          0.000  0.176
  P-value RMSEA <= 0.05                          0.245

Standardized Root Mean Square Residual:

  SRMR                                           0.042

Parameter Estimates:

  Information                                 Expected
  Information saturated (h1) model          Structured
  Standard Errors                             Standard

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1                1.000                               
    y2                1.000                               
    y3                1.000                               

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               0.000                               
   .y1                0.245    0.141    1.733    0.083    
   .y2                0.845    0.155    5.450    0.000   
   .y3                0.045    0.165    0.273    0.785    

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    3.262    0.369    8.833    0.000    
   .y1      (vps1)    0.735    0.154    4.768    0.000    
   .y2      (vps2)    1.546    0.211    7.338    0.000    
   .y3      (vps3)    2.157    0.264    8.175    0.000    

10.1.4 Output 4

lavaan 0.6-3 ended normally after 15 iterations

  Optimization method                           NLMINB
  Number of free parameters                         18

  Number of observations                           499

  Estimator                                         ML
  Model Fit Test Statistic                     119.363
  Degrees of freedom                                 9
  P-value (Chi-square)                           0.000

Model test baseline model:

  Minimum Function Test Statistic             1353.079
  Degrees of freedom                                15
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    0.918
  Tucker-Lewis Index (TLI)                       0.863

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4125.719
  Loglikelihood unrestricted model (H1)      -4066.038

  Number of free parameters                         18
  Akaike (AIC)                                8287.439
  Bayesian (BIC)                              8363.266
  Sample-size adjusted Bayesian (BIC)         8306.133

Root Mean Square Error of Approximation:

  RMSEA                                          0.157
  90 Percent Confidence Interval          0.132  0.182
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.056

Parameter Estimates:

  Information                                 Expected
  Information saturated (h1) model          Structured
  Standard Errors                             Standard

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    item_1  (la11)    0.969    0.045   21.315    0.000   
    item_2  (la21)    0.726    0.051   14.350    0.000    
    item_3  (la31)    1.166    0.048   24.139    0.000   
    item_4  (la41)    0.818    0.043   19.009    0.000    
    item_5  (la51)    0.671    0.051   13.212    0.000   
    item_6  (la61)    0.642    0.049   13.141    0.000    

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)  
    eta               0.000                               
   .item_1  (la10)    2.563    0.053   48.247    0.000    
   .item_2  (la20)    2.315    0.053   43.358    0.000   
   .item_3  (la30)    2.261    0.059   38.417    0.000    
   .item_4  (la40)    2.948    0.049   60.733    0.000    
   .item_5  (la50)    1.581    0.053   29.962    0.000   
   .item_6  (la60)    2.461    0.051   48.541    0.000    

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               1.000                               
   .item_1  (vps1)    0.468    0.040   11.758    0.000   
   .item_2  (vps2)    0.895    0.061   14.684    0.000    
   .item_3  (vps3)    0.368    0.043    8.630    0.000    
   .item_4  (vps4)    0.507    0.038   13.231    0.000    
   .item_5  (vps5)    0.940    0.063   14.896    0.000   
   .item_6  (vps6)    0.871    0.058   14.908    0.000  

10.1.5 Output 5

lavaan 0.6-3 ended normally after 77 iterations

  Optimization method                           NLMINB
  Number of free parameters                         12

  Number of observations                           200

  Estimator                                         ML
  Model Fit Test Statistic                       1.123
  Degrees of freedom                                 2
  P-value (Chi-square)                           0.570

Model test baseline model:

  Minimum Function Test Statistic              676.783
  Degrees of freedom                                 6
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.004

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1462.638
  Loglikelihood unrestricted model (H1)      -1462.077

  Number of free parameters                         12
  Akaike (AIC)                                2949.277
  Bayesian (BIC)                              2988.857
  Sample-size adjusted Bayesian (BIC)         2950.839

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent Confidence Interval          0.000  0.118
  P-value RMSEA <= 0.05                          0.705

Standardized Root Mean Square Residual:

  SRMR                                           0.004

Parameter Estimates:

  Information                                 Expected
  Information saturated (h1) model          Structured
  Standard Errors                             Standard

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1      (la11)    1.000                               
    y2      (la21)    1.013    0.058   17.570    0.000    
    y3      (la31)    1.010    0.055   18.235    0.000    
    y4      (la41)    1.043    0.058   18.092    0.000    

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta              15.205    0.159   95.754    0.000    
   .y1      (la10)    0.000                              
   .y2      (la20)   -0.416    0.883   -0.470    0.638   
   .y3      (la30)   -0.220    0.848   -0.260    0.795   
   .y4      (la40)   -0.793    0.883   -0.898    0.369   

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    3.999    0.503    7.945    0.000   
   .y1      (vps1)    1.044    0.144    7.228    0.000   
   .y2      (vps2)    1.274    0.166    7.682    0.000    
   .y3      (vps3)    1.077    0.148    7.263    0.000   
   .y4      (vps4)    1.192    0.162    7.362    0.000

10.2 Aufgabe 2

Die zweite Übungsaufgabe besteht darin, drei vorgegebene, lückenhafte Outputs zu vervollständigen. Alle Aufgaben sind eindeutig und können auf Grund eures bisherigen Vorwissens gelöst werden.

10.2.1 Output 1

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)  
  eta =~                                                                
    y1                                              
    y2                                             
    y3                                          
    y4                                              
    y5                                             
    y6                                              

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               0.317    0.056    5.651    0.000    
   .y1                                              
   .y2                                               
   .y3                                             
   .y4                                              
   .y5                                              
   .y6                                            

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    0.824    0.077   10.694    0.000   
   .y1      (veps)    0.709    0.026   27.386    0.000    
   .y2      (veps)       
   .y3      (veps)         
   .y4      (veps)              
   .y5      (veps)                 
   .y6      (veps)              

10.2.2 Output 2

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1                                             
    y2                                             
    y3                                         
    y4                                             

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)  
    eta                                              
   .y1               15.205    0.161   94.715    0.000   
   .y2               14.990    0.164   91.229    0.000  
   .y3               15.130    0.161   93.897    0.000   
   .y4               15.070    0.164   92.155    0.000  

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    4.125    0.441    9.347    0.000    
   .y1      (vps1)    1.029    0.141    7.309    0.000    
   .y2      (vps2)    1.275    0.163    7.837    0.000    
   .y3      (vps3)    1.068    0.144    7.407    0.000   
   .y4      (vps4)    1.223    0.158    7.744    0.000  

10.2.3 Output 3

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)  
  eta =~                                                                
    item_1  (la11)                                   
    item_2  (la21)    0.749    0.053   14.034    0.000   
    item_3  (la31)    1.203    0.055   22.016    0.000   
    item_4  (la41)    0.843    0.046   18.275    0.000    
    item_5  (la51)    0.692    0.053   12.965    0.000    
    item_6  (la61)    0.662    0.051   12.899    0.000   

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               2.563    0.053   48.247    0.000   
   .item_1  (la10)                               
   .item_2  (la20)    0.395    0.145    2.723    0.006   
   .item_3  (la30)   -0.823    0.147   -5.583    0.000   
   .item_4  (la40)    0.786    0.125    6.280    0.000    
   .item_5  (la50)   -0.193    0.145   -1.327    0.185   
   .item_6  (la60)    0.765    0.139    5.482    0.000    

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    0.940    0.088   10.657    0.000    
   .item_1  (vps1)    0.468    0.040   11.758    0.000    
   .item_2  (vps2)    0.895    0.061   14.684    0.000    
   .item_3  (vps3)    0.368    0.043    8.630    0.000    
   .item_4  (vps4)    0.507    0.038   13.231    0.000    
   .item_5  (vps5)    0.940    0.063   14.896    0.000    
   .item_6  (vps6)    0.871    0.058   14.908    0.000  

10.3 Aufgabe 3

In der dritten Übungsaufgabe habt ihr einen Output eines \(\tau\)-kongenerischen Modells vorgegeben, bei dem die Beschriftungen der Schätzer fehlen. Ergänzt bitte diese Beschriftungen der einzelnen Schätzer.

10.3.1 Output eines tau-kongenerischen Modells

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1                1.690    0.116   14.572    0.000    
    y2                1.943    0.136   14.291    0.000    
    y3                1.905    0.147   13.002    0.000    

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               0.000                              
   .y1                0.245    0.137    1.786    0.074    
   .y2                0.845    0.160    5.281    0.000    
   .y3                0.045    0.168    0.267    0.789    

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               1.000                              
   .y1                0.910    0.168    5.409    0.000    
   .y2                1.345    0.231    5.835    0.000    
   .y3                2.033    0.272    7.487    0.000   

10.4 Aufgabe 4

In der folgenden Aufagbe werden euch mehrere Outputs dargestellt. Eure Aufgabe ist es, aus den dargestellten Outputs abzulesen, welches Modell der Testung zu Grunde lag und dann auf dieser Grundlage, aus den Outputs die Modellgleichungen und Pfaddiagramme des Modells aufzustellen.

10.4.1 Output 1

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)  
  eta =~                                                                
    y1                1.000                              
    y2                1.000                              
    y3                1.000                              
    y4                1.000                              

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               6.680    0.068   98.517    0.000   
   .y1                0.000                               
   .y2                0.000                               
   .y3                0.000                              
   .y4                0.000                               

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    1.947    0.145   13.431    0.000   
   .y1      (veps)    1.295    0.048   27.221    0.000    
   .y2      (veps)    1.295    0.048   27.221    0.000    
   .y3      (veps)    1.295    0.048   27.221    0.000   
   .y4      (veps)    1.295    0.048   27.221    0.000   

10.4.2 Output 2

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1                1.000                              
    y2                1.000                              
    y3                1.000                               
    y4                1.000                              

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta              15.205    0.161   94.715    0.000   
   .y1                0.000                              
   .y2               -0.215    0.107   -2.003    0.045  
   .y3               -0.075    0.102   -0.732    0.464   
   .y4               -0.135    0.106   -1.272    0.203   

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta     (veta)    4.125    0.441    9.347    0.000    
   .y1      (vps1)    1.029    0.141    7.309    0.000   
   .y2      (vps2)    1.275    0.163    7.837    0.000   
   .y3      (vps3)    1.068    0.144    7.407    0.000    
   .y4      (vps4)    1.223    0.158    7.744    0.000    

10.4.3 Output 3

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1      (la11)    0.864    0.072   12.063    0.000   
    y2      (la21)    0.004    0.083    0.044    0.965   
    y3      (la31)    0.931    0.077   12.118    0.000    
    y4      (la41)    0.432    0.071    6.083    0.000   
    y5      (la51)    0.573    0.056   10.154    0.000   
    y6      (la61)    0.785    0.060   13.160    0.000   
    y7      (la71)    0.029    0.065    0.447    0.655   
    y8      (la81)    1.051    0.074   14.126    0.000    

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|) 
    eta               0.000                              
   .y1      (la10)    3.443    0.083   41.480    0.000   
   .y2      (la20)    3.460    0.079   43.531    0.000   
   .y3      (la30)    3.989    0.089   44.760    0.000   
   .y4      (la40)    2.994    0.072   41.795    0.000    
   .y5      (la50)    3.528    0.062   56.723    0.000    
   .y6      (la60)    5.051    0.071   71.054    0.000   
   .y7      (la70)    3.966    0.062   64.312    0.000    
   .y8      (la80)    3.267    0.091   35.906    0.000   

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               1.000                               
   .y1      (vps1)    0.465    0.060    7.800    0.000   
   .y2      (vps2)    1.112    0.119    9.381    0.000  
   .y3      (vps3)    0.531    0.068    7.774    0.000    
   .y4      (vps4)    0.717    0.079    9.131    0.000   
   .y5      (vps5)    0.353    0.042    8.478    0.000    
   .y6      (vps6)    0.274    0.038    7.142    0.000    
   .y7      (vps7)    0.668    0.071    9.380    0.000    
   .y8      (vps8)    0.352    0.056    6.270    0.000    

10.4.4 Output 4

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   
  eta =~                                                                
    y1      (la11)    1.000                              
    y2      (la21)    1.081    0.060   18.031    0.000   
    y3      (la31)    1.050    0.059   17.843    0.000    
    y4      (la41)    0.943    0.058   16.348    0.000    

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   
    eta               6.690    0.080   83.795    0.000   
   .y1      (la10)    0.000                               
   .y2      (la20)   -0.290    0.408   -0.711    0.477   
   .y3      (la30)   -0.226    0.400   -0.566    0.571   
   .y4      (la40)   -0.024    0.392   -0.061    0.951   

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)  
    eta     (veta)    1.898    0.196    9.685    0.000    
   .y1      (vps1)    1.251    0.105   11.965    0.000    
   .y2      (vps2)    1.095    0.103   10.669    0.000    
   .y3      (vps3)    1.107    0.101   11.009    0.000    
   .y4      (vps4)    1.374    0.108   12.708    0.000